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Abstract. This paper focuses on Trajectory User Link (TUL), which
aims at identifying user identities through exploiting their mobility pat-
terns. Existing TUL approaches are based on location representation, a
way to learn location associations by embedding vectors that can indicate
the level of semantic similarity between the locations. However, existing
methods for location representation don’t consider the semantic diversity
of locations, which will lead to a misunderstanding of the semantic infor-
mation of trajectory when linking anonymous trajectories to candidate
users. To solve this problem, in this paper, we propose Deep Behavior
Relevant Location representation (DBRLr) to map the polysemous loca-
tions into distinct vectors, from the perspective of users’ behavior to
reflect the semantic polysemy of locations. To learn this representation,
we build a Location Prediction-based Movement Model (LP-based MM),
which learns user behavior representation at each visited location from
a large history trajectory corpora. LP-based MM considers both Conti-
nuity and Cyclicity characteristics of user’s movement. We employ the
combination of the intermediate layer representation in LP-based MM
as DBRLr. An effective recurrent neural network is used to link anony-
mous trajectories with candidate users. Experiments are conducted on
two real-world datasets, and the result shows that our method performs
beyond existing methods.

Keywords: Human mobility identification · Trajectory-user link ·
Location representation · Polysemous location

1 Introduction

The plentiful location-based applications make it possible to accumulate lots of
users’ movement data. Massive anonymous trajectories, which we do not know
who created them, are collected, bringing in many problems to trajectory-based
analysis. Trajectory User Link (TUL) [8] aims to solve this problem, to identify
anonymous trajectories and associate them with candidate users. Because the
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user’s behavior information is difficult to fully analyze, TUL is still a challenging
problem. In recent years, there have been many works focused on TUL [7,8,13,
20,22,28,29].

Existing TUL approaches are based on location representation. Similar to
word embedding [14] in natural language processing and node embedding in
graph learning [9], the location representation learns embedding vectors that can
indicate semantic similarity between the locations from large historical trajectory
corpora. By location representation, the original anonymous trajectory, repre-
sented by longitude and latitude, can be converted into a sequence composed of
semantic locations, which benefits a better understanding of the whole trajectory
information. Existing location representation methods consider sequential infor-
mation [1,11] and spatial information [5,31]. All those approaches are based on a
single semantic location representation, establishing a one-to-one correspondence
between locations and their semantic vector representations.

Fig. 1. A demonstration of polysemous location.

Nevertheless, we hold that the semantic information of locations is polyse-
mous. Precisely, the same location unfolds varying effects for different users at
different time. To illustrate our motivation more precisely, we set up a simple
example. As shown in Fig. 1, there are two trajectories. Suppose the two trajec-
tories belong to two users (In fact, we do not know this message because those
trajectories are anonymous). Both user 1 and user 2 have reached a market.
We can conjecture from their complete trajectories that they have completely
different behaviors on the market. In this example, the exact location (mar-
ket) generates specific semantic information in different trajectories, which is a
universal phenomenon. However, existing TUL methods ignore the polysemy of
locations, which would lead to a biased understanding of trajectory patterns and
misjudge the candidate user corresponding to this trajectory.
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To solve this problem, we propose DBRLr, Deep Behavior Relevant
Location representation, which learns the semantic information of user’s behav-
ior on location to represent the polysemous location embedding. To learn this
representation, we build a Location Prediction-based Movement Model (LP-
based MM) to learn user behavior from a large number of historical trajectories.
LP-based MM considers 2C characteristics of users’ behavior: continuity and
cyclicity, and employs the combination of the intermediate layer representation
as DBRLr. After that, we establish the connection between anonymous trajec-
tory and candidate users based on a deep recurrent neural network called Linker.
The Linker takes the representation of the anonymous trajectory as input and
outputs the probability of each candidate user. We conduct experiments on three
real-world datasets, and the result shows that our method performs beyond exist-
ing approaches. Our contributions are as follow:

– We propose DBRLr, a polysemous location representation method. DBRLr
utilizes the behavior characteristics of the user’s visiting location to represent
the location. As a result, the same location can reflect different semantic
information.

– We establish LP-based MM to depict the user movement pattern on trajec-
tories. LP-based MM learns from numerous historical trajectory corpora and
embeds locations dynamically based on complete trajectory information.

– We employ DBRLr for TUL problem and conduct experiments on three
real-world datasets. Extra trajectories of history is used for training MM.
The results show that employing MM for location representation improves
TUL performance. Our source codes are publicly available at https://github.
com/taos123/TUL by DBRLr.

2 Related Works

2.1 Trajectory Classification

TUL is one kind of trajectory classification problem if we regard one user as one
category of trajectory classification. Trajectory classification has been widely
studied and applied [23]. We mainly introduce two kinds of trajectory classi-
fication methods. One is based on trajectory similarity measure metrics such
as Euclidean Distance, Hausdorff Distance, Dynamic Time Warping Distance
(DTW), Longest Common Subsequence (LCSS) Distance, and Fréchet Distance,
or trajectory feature extraction method of trajectory [6]. Another is based on
deep learning, which employs deep neural networks to learn a trajectory repre-
sentation [3,8,10,12]. These methods mostly use recurrent neural networks to
extract trajectory characteristics and classify trajectories, which can effectively
deal with the problem of the uncertain length of the trajectory. In recent years,
there are some pertinent trajectory classification approaches for TUL problems,
such as TULER [8], TULVAE [29], TULAR [22] and AdattTUL [7]. Reference
[8] is the first work to put forward the TUL problem formally and employs
location embedding, in which locations represented by longitude and latitude

https://github.com/taos123/TUL_by_DBRLr
https://github.com/taos123/TUL_by_DBRLr
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are learned into semantic information representation. Variational autoencoder
is employed into TUL in [29] to improve TUL performance. Adversarial neural
networks are employed [7] for generating more training trajectories. Both [13]
and [22] consider the influence of different locations by attention mechanism.

2.2 Location Representation

A graph-based embedding model is proposed in [24], jointly capturing the
sequential effect, geographical influence, temporal cyclic effect, and semantic
effect in a unified way. Reference [27] proposes a model to capture the semantics
information of place types. The model is based on Word2Vec, which augments
the spatial contexts of POI types by using distance and information-theoretic
approaches to generate embedding. Reference [5] proposes POI2Vec, a latent
representation model, which uses the geographical influence of POIs to learn
latent representations. Reference [16] introduces a model called Deepcity, which
is based on deep learning. It is used to learn features for user and location profil-
ing. Reference [4] employs SkipGram [15] algorithm to predict a location’s con-
text given the location itself, which contains the representation of the location.
Reference [30] learns latent representations of places by directly model move-
ments between places with large-scale movement data. Reference [26] proposes
an unsupervised machine language translation method to translate location rep-
resentations across different cities. Reference [21] proposes fine-grained location
embedding by leveraging hierarchical spatial information according to the local
density of observed data points to overcome the data sparsity problem. Exist-
ing work considers location embedding from different perspectives of structural
information but does not consider the diversity of location semantics. To the
best of our knowledge, it is the first time to propose polysemous location repre-
sentation in trajectory data mining domains.

3 Methodology

Fig. 2. An overview structure of trajectory user link with deep behavior relevant loca-
tion representation.
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We introduce the technical details of DBRLr for TUL in this section. Our method
consists of two main stages: 1) Deep behavior relevant location representation.
In this part, we build a LP-based MM based on continuity and cyclicity of
user’ movement and train it, taking advantage of a lot of history trajectory
corpora. We extract the intermediate layer representation of MM as DBRLr. 2)
Trajectory-User Link. In this stage, the anonymous trajectory is embedded into
semantic vectors by DBRLr. A two-layer biLSTM and a simple classifier are
used to capture characteristics and link the anonymous trajectories to candidate
users. Figure 2 presents an overview of our method.

3.1 Preliminary

We will present the mathematical notations and problem statement first. Let
U = {u1, u2, · · · , uM} be user set. Let L = {l1, l2, · · · , lK} be all of locations
that all users visited. For each user, the user’s movement through space produces
a sequence of locations, which is denoted by T = {l1, l2, · · · , li, · · · , lN}, where
li ∈ L and N is the length of trajectory. Non-anonymous trajectories will contain
user’s identity information. For an anonymous trajectory, we need to infer the
corresponding user identify.

Given an anonymous trajectory T , the trajectory-user link aims to indicate
the most likely user from U that is most likely to produce the anonymous tra-
jectory. TUL learns a mapping function that links trajectories to users: T → U
[29].

3.2 Empirical Analysis

We first intuitively investigate two problems: Is users’ behavior learnable? How
to learn a user’s behavior in a given location? Due to the restriction of trajec-
tory acquisition technology and privacy protection, users’ behaviors in locations
are not captured in almost all public trajectory datasets. Though, the user’s
behaviors are potentially indicated in the user’s trajectories. As it is shown in
Fig. 3, we summarize users’ movement adhering to 2C principles: Continuity and
Cyclicity. Continuity means that where a user stays is affected by his previous
locations and where he plans to go [18,31]. Cyclicity means that users will be
influenced by regular habits when they decide where to go [19,24]. Through the
above two characteristics, we can obtain the similarity of users’ behavior in loca-
tions. Therefore, if we can establish a model to comprehensively consider the two
characteristics based on an extensive trajectory data corpora, we can learn the
similar relationship between users’ behaviors and get the behavior representation
of users on a location.

3.3 Location Prediction Based Movement Model

Inspired by the language model [17], we propose a location prediction-based
movement model to learn the users’ movement. We first describe the parts of the
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Fig. 3. 2C users’ movement principles.

continuity. We can intuitively discover that a user’s current location is affected
by his historical location. For a trajectory T in historical trajectory corpora, T
contains N locations, (l1, l2, · · · , lN ). A forward movement model computes the
probability of the trajectory by modeling the probability of location lk given the
preceding locations (l1, l2, lk−1). The probability is shown as Eq. 1.

p(l1, l2, · · · , lN ) =
N∏

k=1

p(lk|l1, l2, · · · , lk−1) (1)

At the same time, we also consider the users’ visiting backward model, which
means the user’s current location is affected by the location he will visit later.
A backward movement model is similar to a forward movement model, except
it runs over the sequence in reverse, predicting the current locations given the
future locations. The backward model is shown in Eq. 2.

p(l1, l2, · · · , lN ) =
N∏

k=1

p(lk|lk+1, lk+2, · · · , lN ) (2)

We employ the location embedding by reference [8] then pass it through
L layers of forward LSTMs. At each location lk, each LSTM layer outputs a
context-dependent representation

−→
h MM

k,j where j denotes the LSTM layer and

j = 1, 2, · · · , L. Let
−→
h MM

k,L denote the top layer LSTM output, which is used to
predict pk+1 with a softmax layer which is shown in Eq. 3.

p(lk) =
−→
h MM

k,L
∑N

i=1

−→
h MM

i,L

(3)
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It can be implemented in an simple way to a forward model, with each
backward LSTM layer j in a L layers deep model producing representation←−
h MM

k,j of lk given (lk+1, lk+2, · · · , lN ).
We employ a biLSTM combining both forward and backward models as con-

tinuity parts. We maximize the log likelihood of the forward and backward model
by Eq. 4.

N∑

k=1

(log p(lk, · · · , lk+1;Θx,
−→
ΘLSTM , Θs)

+ log p(lk+1, · · · , ln;Θx,
←−
ΘLSTM , Θs))

(4)

We consider the cyclicity of movement from global perspective. For all tra-

jectory
{
T k
1 , T k

2 , . . . , T k
n

}
which contain location lk, we extract locations {l

Tk
j

n }
in the same period with lk, where l

Tk
i

j ∈ T k
i and l

Tk
i

j is visited in same periods
with lk. Similarly, we need to establish the optimal location probability under
this set of periodic correlation sets. The probability is shown as Eq. 5.

p(l1, l2, · · · , ln) =
N∏

k=1

nk∏

j=1

p(lk|lTk
n

j ) (5)

The cyclicity can also implemented by the same biLSTM. The maximizes the
log likelihood of the cyclicity of movement model is shown as formulation 6:

N∑

k=1

(log p(lk;Θx, Θ̃LSTM , Θs) (6)

The LP-based MM, considering both continuity and cyclicity, can be trained
under jointly maximized log likelihood with formulation 4 and formulation 6.

3.4 Deep Behavior Relevant Location Representations

After training LP-based MM, we use the combination of the intermediate layer
representation in biLSTM. For each location lk, a L-layer LP-based MM com-
putes a set of 2L+1 representation.

Rk =
{

XMM
k ,

−→
h MM

k,j ,
←−
h MM

k,j , h̃MM
k,j |j = 1, . . . , L

}

=
{
hMM

k,j |j = 0, . . . , L
} (7)

Where hMM
k,0 is the first location layer and hMM

k,j =
[−→

h MM
k,j ;

←−
h MM

k,j ; h̃MM
k,j

]
, for

each biLSTM layer.
DBRLr collapses all layers in R into a single vector, DBRLrk = E(Rk;Θε).

In the simplest case, DBRLr just selects the top layer.
Given a trajectory T = (l1, l2, · · · , lN ), the location lk in T represented by

DBRLr is v(lTk ).



446 T. Sun et al.

3.5 Trajectory-User Linker

For the anonymous trajectory datasets to be identified, we first input each anony-
mous trajectory into the behavior representation layer to obtain the trajectory
representation with DBRLr, which are represented as

(
v(lT1 ), v(lT2 ), · · · , v(lTN )

)
.

To process the long-term variable-length location sequence, we employ a biL-
STM to control input and output of location embedding. For the input trajectory
Traj = {l1, l2, · · · , lN}, let {h1, h2, · · · , hN} denote the output status of biLSTM
as ht = biLSTM(v(lt)). In this way, we can get the every time of the biLSTM
outputs. We use a weighted average formula to fuse every time information by
Eq. 8.

v (Traj) =
N∑

t=1

atht (8)

where at is the weight of location on t, reflecting the influence of this lt to
the whole trajectory. We calculate at by the following Eq. 9.

at = tanh
(
W1ht + W2hs

)
(9)

where W1 and W2 are parameters to learn and hs is the mean value of
{ht|t = 1, 2, · · · , N}. Then we employ fully connection layer with parameters
W3 ∈ R

N×M and b ∈ R
1×M to mapping trajectory information to the dimensions

of the candidate user set.

v (Traj)
user = v (Traj) ∗ W3 + b (10)

Let p (ui|Traj) denote the probability that trajectory Traj belongs to user
ui, which is calculated as Eq. 11. The softmax function converts logits into prob-
abilities.

p (ui|Traj) =
v (Traj)

user

∑M
k=1 v (Traj)

user
(11)

To measure the distance from the truth values, we compute softmax cross
entropy between logits and labels as Eq. 12. In the training process, our objective
is to minimize the loss function.

L =
1
N

N∑

j=1

(
v (ui) −

M∑

i=1

log (p (ui|Traj))

)
(12)

Finally, given an anonymous trajectory Tra, the corresponding predicted
user ui is calculated.

arg max
1<i<M

p (ui|Traj) = {ui ∈ U : p (ui|Traj)} (13)
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4 Experiments

In this section, we conduct experiments to evaluate the accuracy of the proposed
DBRLr by answering the following three key research questions.

– Q1: Does DBRLr outperform the existing TUL baselines in real-world
datasets?

– Q2: Does the LP-based MM improve the performance of DBRLr? How does
DBRLr perform with single-direction movement models?

– Q3: Does DBRLr distinguish between polysemous locations? How does the
polysemous location representation improve the performance of TUL?

4.1 Datasets

We conduct our experiments on three benchmark datasets [2]: Gowalla1,
Brightkite2 and Foursquare3, which are publicly available. Both of them are
collected from location-based social networking websites where users share their
locations by checking in. The data recorded information such as [user id, check-
in time, longitude, latitude, location id]. We randomly select a set of users
in Gowalla, Brightkite and Foursquare, which are the same number as [29]. The
statistics of datasets are summarized in Table 1.

Table 1. Datasets description and statistics

Datasets |U | |T | |C| |Ave|
Gowalla 201 19968 1958 99.34

Brightkite 92 19904 471 216.34

Foursquare 300 13281 162 44.27

|U | is the number of users in the
datasets. |T | denotes the number of tra-
jectories sets. As we can see |T | � |U |.
|C| is the number of check-in locations.
|Ave| represents the average number of
check-in locations per trajectory, which
is calculated by dividing |T | by |U |.

4.2 Baseline Algorithms

We compare our method with both classical trajectory classification methods
and TUL approaches. The following baseline models are evaluated.

– TULER [8]. TULER uses the check-in location embedding method to rein-
force the check-in location information. TULER employs LSTM, GRU, and
their variants as the RNN model, which is called: TULER-L, TULER-G, and
Bi-TULER. We employ open-source TULER in github4.

1 Gowalla: http://snap.stanford.edu/data/loc-Gowalla.html.
2 Brightkite: http://snap.stanford.edu/data/loc-Brightkite.html.
3 https://sites.google.com/site/yangdingqi/home.
4 TULER: https://github.com/gcooq/TUL.

http://snap.stanford.edu/data/loc-Gowalla.html
http://snap.stanford.edu/data/loc-Brightkite.html
https://sites.google.com/site/yangdingqi/home
https://github.com/gcooq/TUL
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– TULVAE [29]. TULVAE learns the human mobility in a neural generative
architecture with stochastic latent variables than span hidden states in RNN.
We employ open-source TULVAE in github5.

– AdattTUL [7]. AdattTUL is a semi-supervised method, which makes adver-
sarial mobility learning for human trajectory classification, which is an end-
to-end framework modeling human moving patterns.

– TULAR [13,22]. TULAR considers the influence of different locations and
introduces trajectory attention mechanism. TULAR is the state-of-the-art
method for TUL. We employ open-source TULAR in github6.

4.3 Evaluation Metrics

We employ Acc1, Acc5, and macro-F1 as the evaluation metrics, which are the
standard metrics of TUL problem [29]. The definitions of those metrics are shown
in the following equations.

AccK =
#correctly linked trajectories @K

#trajectories
(14)

where the #correctly linked trajectories @K is the correct users at top K
candidates, and #trajectories is the total number of anonymous trajectories.
In addition, because TUL is a multi-classification task, we also need to consider
macro-R, macro-P, and macro-f1. The macro-R is the mean of recall value of
every classification, and macro-P is the mean of the precision value of every
classification. The macro-f1 is defined as follows.

macro − F1 = 2 × macro − P × macro − R

macro − P + macro − R
(15)

4.4 Parameter Setup

The training process of our model includes two stages: DBRLr training and
Linker training. In the DBRLr training process, we employ a 2-lay bi-LSTM for
realizing LP-based MM with input dimension 256. We slice the original trajec-
tory data at 6-hour intervals. We set at least ten training epochs for movement
model training. We introduce the regularization method dropout with a dropout
rate of 0.1. In the Linker training process, we set the input dimension of Linker
to 256. We set the initial learning rate as 0.001, and after 20 to 30 iterations, we
reduce the learning rate by half. We use Adam as the optimizer. What’s more,
we shuffle the training trajectory data set before the initialization of the model.
We’ll expose the code later in GitHub for reproduction.

5 TULVAE: https://github.com/AI-World/IJCAI-TULVAE.
6 TULAR: https://github.com/taos123/TULAR.

https://github.com/AI-World/IJCAI-TULVAE
https://github.com/taos123/TULAR
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4.5 Overall Performance (Q1)

Table 2 exhibits the overall results compared our method with baselines. It can be
seen that our method has a significant improvement for TUL. More specifically,
on Gowalla and Foursquare, our method is higher than baselines at one percent-
age point, with over 2% performance improvement in Acc@1. On Brightkite, our
method is higher than baselines at nine percentage points, with over 18% perfor-
mance improvement in Acc@1. This means that we have achieved a recognition
accuracy of more than 50%, which will significantly improve TUL availability
in practical application scenarios. It can also be seen that our method improves
the effect more on Brightkite than on Gowalla and Foursquare.

In has been verified in [29] that the classical trajectory classification method
has poor performance for TUL because those classical trajectory classification
methods measure the geospatial similarity between trajectories, while TUL needs
to find the behavioral similarity between trajectories. There is a slight discrep-
ancy between the results of TULER, TULVAE, AdattTUL, and TULAR. This is
because these approaches focus on Linker model improvements to capture trajec-
tory patterns. However, as their input layer, single semantic location representa-
tion will cause errors in the semantic information of some locations, resulting in
biased recognitions for some trajectories. The improvement of our method ben-
efits from a more accurate understanding of the semantic information of trajec-
tory. DBRLr infers the specific semantic information of each location according
to the knowledge learned from the historical trajectory corpora and the context
information of the whole trajectory.

4.6 Ablation Experiments (Q2)

In order to explore how LP-based MM impacts the performance of DBRLr, we
design five contrast movement models to retrain DBRLr and compare those per-
formances on TUL. The model variants and descriptions are shown in Table 3.
We train these above four MMs in the same history trajectory corpora and the
same experimental environment. Then we extract location representations from
the trained movement model. Applying the above different location representa-
tion in TUL with Linker in Sect. 3.4, the performance comparison is shown in
Fig. 4.

Figure 4 shows the comparison between different contrast models. We can
see that DBRLr with a 2-layer bi-direction movement model achieves the best
performance. The location embedding effect without the MM model is generally
lower than that with the MM model. Compared with the single-direction move-
ment model, and the bi-direction model can better capture global information
of trajectory, which significantly improves the accuracy of TUL. It can also be
observed that DBRLr with two-layer performance is better than one layer, indi-
cating that high-level exploring might obtain more practical information from
human movement. Nevertheless, this gap is not very obvious. We think the higher
layer can capture the information for trajectory. Furthermore, a two-direction of
movement model can describe movement patterns with advantages.
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Table 2. Performance comparison on Gowalla and Brightkite

Method Metric

Acc@1 Acc@5 macro-F1 Acc@1 Acc@5 Macro-F1 Acc@1 Acc@5 Macro-F1

Gowalla Brightkite Foursquare

TULER-L 0.4179 0.5789 0.3243 0.4124 0.5688 0.3007 0.5122 0.5911 0.4566

TULER-G 0.4261 0.5795 0.3391 0.4085 0.5731 0.2864 0.5091 0.5887 0.4560

Bi-TULER 0.4267 0.5954 0.3215 0.4195 0.5758 0.3190 0.5388 0.6141 0.4873

TULVAE 0.4435 0.6446 0.3621 0.4540 0.6239 0.3541 0.5428 0.6169 49.22

AdattTUL-G 0.4692 0.6364 0.3726 0.4838 0.6496 0.4269 0.5783 0.6463 0.5364

AdattTUL-L 0.4761 0.6464 0.3774 0.4891 0.6544 0.4335 0.5812 0.6470 0.5385

TULAR-L 0.3265 0.4613 0.2702 0.3012 0.3913 0.2302 0.5881 0.6474 0.5293

TULAR-G 0.3786 0.4928 0.3408 0.4050 0.5338 0.3998 0.5853 0.6521 0.5301

TULAR-B 0.4125 0.5550 0.3432 0.4207 0.6146 0.3659 0.5807 0.6533 0.5358

Our Method 0.4875 0.7227 0.4055 0.5798 0.7750 0.5511 0.6072 0.6933 0.5541

On Gowalla, our method higher than existing methods than 2.39%, 11.80%, 7.45% in
terms of Acc@1, Acc@5, F1. On Brightkite, our method higher than existing methods
than 18.54%, 18.42%, 27.12% in terms of Acc@1, Acc@5, F1. On Foursquare, our
method higher than existing methods than 4.56%, 6.12%, 3.41% in terms of Acc@1,
Acc@5, F1.

Table 3. Ablation experiment model settings

Model variants Description

F-MM Location prediction-based movement model with forward
prediction only

B-MM Location prediction-based movement model with back
prediction only

Bi-MM Location prediction-based movement model with bi-direction
prediction

Bi-MM-2L Location prediction-based movement model with 2-layer
bi-direction prediction

Non-MM Location embedding [8] without MM

4.7 Case Study (Q3)

We select some specific trajectories from real-world datasets for analysis and
visualization. First, we verify whether DBRLr can distinguish polysemous loca-
tions. We select a location7 that is embedded to multiple vectors in different
directions under DBRLr, and two trajectories contained the location mentioned
above. In the single semantic location representation, these two trajectories are
connected to unmatched users. While under DBRLr, T1 and T2 are respectively
linked to the correct corresponding candidate users. We visualize the two trajec-
tories and the above location l3 shown in Fig. 5. By looking up in Google maps8,
we find that l3 may be a bank, and T1 passes through l3 between two restaurants.
7 Location ID is efa6e44dfa0145249be273ecd84a97f534b04920 in Brightkite.
8 https://www.google.com/maps.

https://www.google.com/maps
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Fig. 4. Performance comparison on different movement models.

We speculate that the user is handling business at l3. On the contrary, T2 passes
another band and stays in l3 for a long time, and we speculate that the user is
working at l3.

Secondly, we verify whether DBRLr contributes to the improvement of TUL
recognition accuracy. We input four users’ trajectories into the Linker under
different location representations and exact the output layer for visualization,
which is shown in Fig. 6. We notice that under DBRLr, the trajectories of the
same users are more compact and clustered. However, in a single representation,
the clusters are more scattered. This indicates that outliers decreases, while
the clustered points increases under DBRLr, which is a practical demonstration
that DBRLr can overcome misunderstandings of trajectory semantic information
when linking anonymous trajectories to candidate users.
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Fig. 5. Visualization of polysemous location in Brightkite.

Fig. 6. Trajectory embedding visualization.

5 Conclusions

In this paper, we improved TUL performance by using a polysemous location
representation model called DBRLr. To learn this representation, we build a
LP-based MM and train it historical trajectory corpora. Compared with the
previous work, the trajectory with DBRLr can better describe the behavior and
movement characteristics of a user. The experiment results confirm this view.
We sincerely believe that DBRLr can be used not only in TUL but also in other
trajectory data mining fields [25], such as next visited location prediction or
location-based recommendation. Our follow-up work will examine our ideas on
more datasets and more trajectory analysis tasks.
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